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Continuity Conditions for the Radial Distribution
Function of Square-Well Fluids
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The continuity properties of the radial distribution function g(r) and its close
relative the cavity function y(r)#e,(r)�kB Tg(r) are studied in the context of the
Percus�Yevick (PY) integral equation for 3D square-well fluids. The cases
corresponding to a well width (*&1) _ equal to a fraction of the diameter of the
hard core _�m, with m=1, 2, 3, have been considered. In these cases, it is
proved that the function y(r) and its first derivative are everywhere continuous,
but eventually the derivative of some order becomes discontinuous at the points
(n+1) _�m, n=0, 1,... . The order of continuity [the highest order derivative of
y(r) being continuous at a given point] }n is found to be }ntn in the first case
(m=1) and }nt2n in the other two cases (m=2, 3), for n>>1. Moreover,
derivatives of y(r) up to third order are continuous at r=_ and r=*_ for
*=3�2 and *=4�3, but only the first derivative is continuous for *=2. This can
be understood as a nonlinear resonance effect.

KEY WORDS: Radial distribution function; cavity function; square-well
fluid; Percus�Yevick integral equation.

I. INTRODUCTION

Simple models have played an important role in the development of liquid
state theory, both as approximations and as useful reference systems in
perturbation schemes. The simplest model with a repulsive hard core and an
attractive well is the square-well (SW) fluid. The SW interaction potential
is

�, r<_
,(r)={&=, _<r<*_ (1)

0, r>*_,
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where _ is the diameter of the hard core, = is the well depth, and (*&1) _
is the well width. The equilibrium properties of the fluid depend on the
values of three dimensionless parameters: the fraction of volume occupied
by the spheres '=?\_3�6 (\ being the number density), the reduced tem-
perature T*=kBT�= (T being the temperature and kB being the Boltzmann
constant), and the width parameter *. These properties can be derived from
a more fundamental quantity, the so-called radial distribution function
g(r).(1, 2) The quantity 4?r2g(r) dr�V is the probability that the centers of
two spherical atoms in the liquid are separated by a distance between r and
r+dr, V being the volume of the system. In the absence of particle interac-
tions (ideal gases) there is no structure in the fluid and g(r)=1. This is also
true for any realistic potential in the limit r � � as we must have ,(r) � 0
in that limit. It is also evident that the centers of two particles in the SW
fluid cannot be nearer than _ due to the hard core, so g(r)=0 for r<_.

Many closed integral equations have been proposed for this function
(YBG, HNC, Percus�Yevick,...), but the most popular is, perhaps, the
Percus�Yevick (PY) equation. In the search for these approximations it
has been found useful to define an auxiliary function, the direct correlation
function c(r), through the Ornstein�Zernike (OZ) relationship

h( |r2&r1| )=c( |r2&r1| )+\ | d 3r3 c( |r1&r3| ) h( |r3&r2| ) (2)

where h(r)= g(r)&1. In this equation and the following ones we are
assuming that the interaction potential is spherically symmetric and the
structure functions, consequently, depends only on the distance between
the particle centers. The physical meaning of the direct correlation function
is clear; it accounts only for the correlation effects arising from a direct
interaction between the particles in the fluid. Nevertheless, the total corre-
lation function h(r) comprises also the correlations propagated by interme-
diate particles. The direct correlation function is expressed in terms of the
so-called bridge functionals, which constitute an infinite sum of diagrams.(1)

Integral equations are obtained by closing the OZ relation with an approxi-
mation for c(r) based upon a sum of some set of these diagrams. By choosing
an appropiate set of diagrams, Percus and Yevick(3, 4) showed that the direct
correlation function is approximately given by

c(r)= g(r)[1&e,(r)�k BT ] (3)

According to (3) the range of c(r) is equal to that of the interaction poten-
tial ,(r) as c(r) is zero in those regions where the interaction potential
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vanishes. The PY equation is given by the substitution of (3) into the OZ
relation (2) and it takes the form(1)

y( |r2&r1| )=A+\ | d 3r3 f ( |r1&r3| )[1+ f ( |r3&r2| )]

_y( |r1&r3| ) y( |r3&r2| ) (4)

where y(r)#e,(r)�kBTg(r) is the cavity function, f (r)=e&,(r)�k B T&1 is the
Mayer function and A is a constant defined as

A=1&\ |
�

0
dr f (r) y(r) 4?r2 (5)

The PY equation is exactly solvable for the hard-sphere (HS) fluid(5) and
the sticky-hard-sphere (SHS) fluid.(6) Both models can be considered as
special cases of the more general SW interaction: the HS potential is
recovered if we take the limit = � 0 (i.e., T* � �) or * � 1; the SHS fluid
is defined by taking the limits * � 1 and = � � (i.e., T* � 0) simulta-
neously, while keeping the parameter {&1=12(1&*&1) e1�T* constant.

Nevertheless, neither the PY equation nor any other integral equation
for fluids has ever been analytically solved for the SW interaction. In 1977,
Sharma and Sharma(7) proposed a mean spherical approximation which
provides an analytical expression for the structure factor but it is not
consistent with the hard core exclusion constraint. By the same time,
Nezbeda(8) proposed a polynomial approximate solution for y(r) valid in
the limit *&1<<1. This solution was based on the continuity of the first and
the second derivatives of y(r) at r=_. More recently, Yuste and Santos(9)

derived a simple approximate expression for the Laplace transform of rg(r)
for the SW fluid. This derivation is based upon simple physical require-
ments (finiteness of the radial distribution function at r=_+ and finite
isothermal compressibility) and the continuity of y(r) at r=*.

The aim of this paper is the analysis of the continuity properties of the
function y(r) satisfying the PY equation for the three-dimensional SW fluid.
First, we must identify the points at the borders of the regions where y(r)
is an analytic function. For *=2 it is clear that these points are given by
r=_, 2_,..., as also happens for the HS potential.(1) The radial distribution
function is then divided in analytic pieces �0(r), �1(r),... and the PY equa-
tion (4) is written as a system of non-linear integral equations for them. In
these equations the Heaviside step function that enters in Eq. (4) through
the Mayer function no longer appears. The continuity properties are
derived from this system. The cases *=3�2 and *=4�3 are more cumber-
some as the intervals cited above are divided into two and three equal
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parts, respectively, and the number of equations is obviously larger. More
general cases with 1<*<4�3 are increasingly more difficult to manage
since the number of intervals becomes larger and larger as the well width
*&1 becomes smaller. We will not deal with those cases in this paper.

The paper is organized as follows. In Section II the PY equation is set
in a form that fits better our purpose and the continuity of y(r) and its first
derivative for r=*_ is suggested from the simulation results of Henderson
et al.(10) The appropiate system of integral equations for the case *=2 is
written in Section III; the general derivatives are then related with the
derivatives of lower order and the continuity conditions are derived recur-
sively. A similar procedure is used in Section IV for the cases *=3�2 and
*=4�3. The conditions for the HS fluid are given in an Appendix. The
paper ends with some remarks on the relevance of these conditions for the
proposal of approximations.

II. DEFINITIONS AND BASIC EQUATIONS

In the applications of the PY equation to simple potentials is often
useful to define a new structure function �(r)=ry(r), which satisfies the same
continuity conditions as y(r). After the change of variables t=|r2&r1|�_,
x=|r1&r3|�_ and y=|r3&r2|�_ one can easily check that Eq. (4) takes the
form(1)

�(t)=At+12' |
�

0
dx f (x) �(x) |

t+x

|t&x|
dy[1+ f ( y)] �( y) (6)

where

A=1&24' |
�

0
dx f (x) x�(x) (7)

It is remarkable that this reduction is only possible in three dimensions
(excepting the one-dimensional case, where no reduction is necessary) and
that the same change of variables in two dimensions yields a significatively
more complex integral equation due to the lack of rotational simmetry
around the vector r2&r1 . The Mayer function f (x)=exp[&,(x)�kBT ]&1
for the SW interaction (1) is given by

1+ f (x)=H(x&1)[1+:H(*&x)] (8)

where H(x) is the Heaviside step function and :#exp(=�kBT )&1. The first
derivative of �(t) obtained from (6) is also given here for future reference
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Fig. 1. Monte Carlo simulation results(10) for the structure functions g(r) (squares), y(r)
(circles), and �(r) (triangles) on a SW fluid with *=3�2, T*=2�3 and '=2?�15. Note that
g(r) and y(r) overlap for r>*_.

�$(t)=A+12' |
�

0
dx f (x) �(x)[1+ f (x+t)] �(x+t)

&12' |
t

0
dx f (x) �(x)[1+ f (t&x)] �(t&x)

+12' |
�

t
dx f (x) �(x)[1+ f (x&t)] �(x&t) (9)

In Fig. 1 the simulation results of Henderson et al.(10) for g(r), y(r) and
�(r) for a SW fluid with *=3�2, T*=2�3 and '=2?�15 are shown. The
radial distribution function is not continuous at r=*_ but both y(r) and
�(r) are clearly continuous functions at that point. Simulation results also
suggest the continuity of the first derivative but nothing can be said about
the second or higher order derivatives as these are very difficult to measure
in a simulation, where only results for widely spaced values of r are
provided.

III. THE SQUARE-WELL FLUID WITH *=2

In this case the well width coincides with the diameter of the hard core
and the function �(t) that satisfies the corresponding PY equation (6) is
conveniently defined in a piecewise fashion as follows
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�0(r) 0<r<1

�1(r) 1<r<2

�(t)={ b b (10)

�n(r) n<r<n+1

b b

where we assume, to be confirmed later, that �n(r), n=0, 1,... are analytic
functions in their intervals of definition. This will be justified by expressing
(9) as a system of integral equations for these functions where the
Heaviside step function in (8) no longer appears. Thus, any derivative of
�n(r), n=0, 1,... is related to derivatives of lower order of the same set of
functions. It can be expected that at a given point t=n+1, n=0, 1,... the
functions �n(r) and �n+1(r) do not match perfectly and this gives rise to
a difference between the derivatives of some order of these functions
evaluated at that point. We define the symbols

2(k)
n =� (k)

n (n+1)&� (k)
n+1(n+1), n=0, 1,..., k=0, 1,... (11)

as the jump in the derivative of order k evaluated at t=n+1. The con-
tinuity of �(t) is a well known fact, (8, 9) so that we have 2 (0)

n =0, n=0, 1,... .
The first derivative is given in (9) in terms of integrals over the functions
�(t) and f (t), which in turn depends on the Heaviside step function. Starting
from (9) and (8) the following set of equations for �$n(t), n=0, 1,... is found

�$0(t)=A&12'(:+1) |
1

1&t
dx �0(x) �1(x+t)

+12':(:+1) {|
2

1+t
dx �1(x) �1(x&t)+|

2&t

1
dx �1(x) �1(x+t)=

+12': |
2

2&t
dx �1(x) �2(x+t) (12)

�$1(t)=A&12' {|
2&t

0
dx �0(x) �1(x+t)

+|
1

2&t
dx �0(x) �2(x+t)&|

t&1

0
dx �0(x) �1(t&x)=

+12': {|
3&t

1
dx �1(x) �2(x+t)+|

2

3&t
dx �1(x) �3(x+t)

&|
2&t

0
dx �0(x) �1(x+t)+|

t&1

0
dx �0(x) �1(t&x)= (13)
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�$2(t)=A&12' {|
3&t

0
dx �0(x) �2(x+t)+|

1

3&t
dx �0(x) �3(x+t)

&|
t&2

0
dx �0(x) �2(t&x)&|

1

t&2
dx �0(x) �1(t&x)=

+12': {|
4&t

1
dx �1(x) �3(x+t)+|

2

4&t
dx �1(x) �4(x+t)

&|
t&1

1
dx �1(x) �1(t&x)+|

1

t&2
dx �0(x) �1(t&x)=

&12':2 |
t&1

1
dx �1(x) �1(t&x) (14)

�$n(t)=A&12' {|
n+1&t

0
dx �0(x) �n(x+t)

+|
1

n+1&t
dx �0(x) �n+1(x+t)

&|
t&n

0
dx �0(x) �n(t&x)&|

1

t&n
dx �0(x) �n&1(t&x)=

+12': {|
n+2&t

1
dx �1(x) �n+1(x+t)

+|
2

n+2&t
dx �1(x) �n+2(x+t)

&|
t&n+1

1
dx �1(x) �n&1(t&x)&|

2

t&n+1
dx �1(x) �n&2(t&x)=

&12':2 |
2

t&2
dx �1(x) �1(t&x) $n, 3 , n�3 (15)

With the PY equation written in the form of this system it is easy to show
that 2(1)

n =0, n=0, 1,... as a consequence of the cancelation of some of the
integral terms at the border points. The continuity of �(t) and its first
derivative is also true in the cases *=3�2, *=4�3, and in the HS fluid
and it is possibly a general property of the PY equation. The derivatives
of order k, k�2 of �1(t), �2(t), etc... are obtained from the system of
Eqs. (12)�(15), yielding
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�(k)
0 (t)=&12' :

k&2

j=0

(&1) j [(:+1) � ( j )
0 (1&t) � (k&2& j )

1 (1)

+:(:+1) � (k&2& j )
1 (1+t) � ( j )

1 (1)

+:(:+1) � ( j )
1 (2&t) � (k&2& j )

1 (2)

&:� ( j )
1 (2&t) � (k&2& j )

2 (2)]+[Int] (16)

�(k)
1 (t)=12' :

k&2

j=0

(&1) j [� ( j )
0 (2&t) 2 (k&2& j )

1

+(1+:)(&1) j � ( j )
0 (t&1) � (k&2& j )

1 (1)

&:� ( j )
1 (3&t) 2 (k&2& j )

2 +:� ( j )
0 (2&t) � (k&2& j )

1 (2)]+[Int] (17)

�(k)
2 (t)=12' :

k&2

j=0

[(&1) j � ( j )
0 (3&t) 2 (k&2& j )

2 &� ( j )
0 (t&2) 2 (k&2& j )

1

&:(&1) j � ( j )
1 (4&t) 2 (k&2& j )

3 &:� ( j )
0 (t&2) � (k&2& j )

1 (2)

&:(:+1) � ( j )
1 (t&1) � (k&2& j )

1 (1)]+[Int] (18)

�(k)
n (t)=12' :

k&2

j=0

[(&1) j � ( j )
0 (n+1&t) 2(k&2& j )

n &�( j )
0 (t&n) 2 (k&2& j)

n&1

&:(&1) j � ( j )
1 (n+2&t) 2 (k&2& j )

n+1 +:� ( j )
1 (t+1&n) 2 (k&2& j )

n&2 ]

+12':2$n, 3 :
k&2

j=0

� ( j )
1 (t&2) � (k&2& j )

1 (2)+[Int], n�3 (19)

where the terms denoted by [Int] include the sum of several integrals over
the functions �n(t), n=0, 1,... and their derivatives. These terms are always
continuous and their explicit expressions are not required for the calcula-
tion of the derivative jumps, so they will not be quoted here. If we take into
account the continuity of �(t) and its first derivative, as well as the con-
dition �(0)=0, the first nonzero derivative jump at the border points
t=1, 2,... is readily derived from Eqs. (16)�(19):

2 (2)
0 =2 (2)

2 =&24':(:+1) �(1) �(2) (20)

2 (2)
1 =12'(:+1)2 [�(1)]2 (21)

2 (2)
3 =12':2[�(2)]2 (22)

2 (2n)
2n = &12'(:+1) �(1) 2 (2n&2)

2n&1

+12':�(2) 2 (2n&2)
2n&2 , n=2, 3,... (23)

2 (2n)
2n+1=12':�(2) 2 (2n&2)

2n&1 , n=2, 3,... (24)
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Therefore, the order of continuity (i.e., the highest order derivative of �(r)
being continuous) is }n=1 for n�3, }n=n&1 for n=4, 6,..., and
}n=n&2 for n=5, 7,... . The presence of discontinuities in the potential at
r=_ and r=2_ gives rise to discontinuities in the second derivative of the
structure function �(r) not only at those points but also at their neighbors
r=3_, 4_ and, surprisingly, these discontinuities are of the same order as
those at the hard core and square-well borders. At larger distances the
structure function becomes more and more continuous and the order of
continuity grows linearly. The derivative jumps in (23) and (24) may,
indeed, increase exponentially at certain physical conditions but this is
balanced with the factorial in a Taylor expansion. These results are then
compatible with the asymptotic limit g(r)= y(r) � 1, or equivalently
�(r) � r, as r � �. It can also be noticed that the first nonzero derivative
jump in Eqs. (20)�(24) depends only on the packing fraction ', the tem-
perature (through :), and the values of the function �(r) at the potential
discontinuity points. The order of continuity of the function �(r) and the
cavity function coincide by definition. The derivative jumps of the second
derivative of y(r) at r=_ and r=2_ are given by

d 2y
dr2 } r=_+

&
d 2y
dr2 } r=_&

=
48'
_2 :(:+1) y(_) y(2_) (25)

d 2y
dr2 } r=2_+

&
d 2y
dr2 } r=2_&

=&
6'
_2 (:+1)2 [ y(_)]2 (26)

which are a consequence of Eqs. (20) and (21).

IV. THE SQUARE-WELL FLUIDS WITH *=3�2 AND *=4�3

In the case *=3�2 the function �(t) is also piecewise but we must dis-
tinguish between the left and the right halves of the intervals n<t<n+1,
n=0, 1,...:

�0(t) 0<t< 1
2

�� 0(t) 1
2<t<1

�(t)={ b b
(27)

�n(t) n<t<n+ 1
2

�� n(t) n+ 1
2<t<n+1

b b
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Consequently, the derivative jumps at the points t=n+1�2 and t=n+1,
n=0, 1, 2,... are denoted by two sets of symbols, 2� (k)

n and 2 (k)
n , respectively.

These symbols are defined as follows

2� (k)
n =� (k)

n (n+ 1
2)&�� (k)

n (n+ 1
2) (28)

2 (k)
n =�� (k)

n (n+1)&� (k)
n+1(n+1) (29)

As in the previous case the functions �(t) and its first derivative are
everywhere continuous and these symbols take the value zero for k=0 and
k=1, n=0, 1,... . The equations for � (k)

n (t) and �� (k)
n are obtained from (8)

and (9) after the elimination of the Heaviside functions. A straightforward
but lengthy calculation that runs in parallel to that of Section III leads to
the following results for the first nonzero symbols at every border point

2 (4)
0 =(12')2 (1+:) �(1)[(1+:)2 [�(1)]2+2:2[�(3�2)]2] (30)

2 (2)
1 =12'(1+:)2 [�(1)]2 (31)

2 (2)
2 =12':2[�(3�2)]2 (32)

2(2n&2)
n = &12'[�(1) 2(2n&4)

n&1 &:�(3�2) 2� (2n&4)
n&1 ], n�3 (33)

2� (2)
0 =2� (2)

2 =&24':(1+:) �(1) �(3�2) (34)

2� (4)
1 = &(12')2 :�(3�2)[:2[�(3�2)]2+2(1+:)2 [�(1)]2] (35)

2� (2n&2)
n = &12'[(1+:) �(1) 2� (2n&4)

n&1 &:�(3�2) 2 (2n&4)
n&1 ], n�3 (36)

In this case we will denote the order of continuity at t=n+1 by }n ,
n=0, 1,... and the corresponding one at t=n+1�2 by }� n , n=0, 1,... .
According to (30)�(35) we conclude that }0=}� 1=3, }1=}2=}� 0=}� 2=1,
and }n=}� n=2n&3 for n�3. It is a remarkable fact that the cavity func-
tion y(r) is continuous up to the third order derivative at those points
where the interaction potential exhibits discontinuities, r=_ and r=3_�2.
Nevertheless, only the first derivative is continuous at the neighbour points
r=_�2, r=2_, r=5_�2 and r=3_. The situation is rather different in the
case studied in the previous section. There, the discontinuity on the square-
well is located precisely at a point where the hard core induces a discon-
tinuity jump on the structure function. This special disposition of the
potential jumps reinforces the discontinuity of the structure functions, y(r)
and �(r), at the lattice sites r�_=1, 2,... on a kind of ``resonance'' effect.
This is also observed at large distances from the hard core as the highest
order derivative exhibiting no jumps grows as r in the SW fluid with *=2
and as 2r in the SW fluid with *=3�2, where the resonance condition is
broken.
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In the case *=4�3 we can find discontinuities at the points t=n+1�3,
t=n+2�3, and t=n+1, n=0, 1, 2,.... In a similar way to the definitions in
(3.2), (4.2), and (4.3) the symbols 2� (k)

n , 2� (k)
n and 2 (k)

n are introduced as
follows

2� (k)
n = lim

= � 0 _
d k�(t)

dtk } t=n+1�3&=
&

d k�(t)
dtk } t=n+1�3+= & (37)

2� (k)
n = lim

= � 0 _
d k�(t)

dtk } t=n+2�3&=
&

d k�(t)
dtk } t=n+2�3+= & (38)

2 (k)
n = lim

= � 0 _
d k�(t)

dtk } t=n+1&=
&

d k�(t)
dtk } t=n+1+=& (39)

where n=0, 1,..., k=0, 1,... . The calculation of these symbols is completely
analogous to that of the previous cases save for the existence of three inde-
pendent analytic functions on the intervals (n, n+1), n=0, 1,... and the
details will not be given. The results for the nonzero symbols with the
lowest value of k for n=0, 1, 2 are

2� (2)
0 =2� (2)

2 =&24':(1+:) �(1) �(4�3) (40)

2� (4)
0 =&(12')2 :(1+:)2 [�(1)]2 �(4�3) (41)

2 (4)
0 =(12')2 (1+:) �(1)[(1+:)2 [�(1)]2+2:2[�(4�3)]2] (42)

2� (4)
1 =&(12')2 :�(4�3)[:2[�(4�3)]2+2(1+:)2 [�(1)]2] (43)

2� (4)
1 =(12')2 :2(1+:) �(1)[�(4�3)]2 (44)

2 (2)
1 =12'(1+:)2 [�(1)]2 (45)

2� (2)
2 =12':2[�(4�3)]2 (46)

2 (4)
2 =&12'(1+:) 2 (2)

1 (47)

Between these conditions and (30)�(36) corresponding to the case *=3�2
we notice some similarities. In particular, the order of continuity at the
points t= 1

2 , 1, 3
2 , 2, 5

2 and 3 for *=3�2 is the same that the order of con-
tinuity at the points t= 1

3 , 1, 4
3 , 2, 7

3 and 8
3 for *=4�3. Moreover, the first

nonzero derivative jump has the same form in both cases if we write them
in terms of �(1) and �(*) (See Eqs. (34) and (40), (30) and (42), etc...).
These considerations suffice us to conjecture that the order of continuity at
the points t=*&1, 2, *+1, 2* is k=1 and the order of continuity at
t=1, * is k=3 for any value of * in the interval 1<*<2. The special
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``resonant'' case *=2 is excluded from this rule. The first nonzero
derivative jumps at these points in terms of the cavity function are expected
to be given by

d 2y
dr2 } (*\1) _+

&
d 2y
dr2 } (*\1) _&

=
24'*

(*\1) _2 :(1+:) y(_) y(*_) (48)

d 4y
dr4 } _+

&
d 4y
dr4 }_&

=&
(12')2

_4 (1+:) y(_)

_[[(1+:) y(_)]2+2[:*y(*_)]2] (49)

d 4y
dr4 } *_+

&
d 4y
dr4 } *_&

=
(12')2

_4 :y(*_)[[:*y(*_)]2+2[(1+:) y(_)]2]
(50)

d 2y
dr2 } 2_+

&
d 2y
dr2 } 2_&

=&
6'
_2 [(1+:) y(_)]2 (51)

d 2y
dr2 }2*_+

&
d 2y
dr2 } 2*_&

=&
6'*
_2 [:y(*_)]2 (52)

which are a consequence of the generalization of (30)�(32), (34) and (35)
or the corresponding conditions for *=4�3. Results for the order of con-
tinuity versus r�_ for the SW fluids we have analyzed and the hard-sphere
case discussed in the Appendix are summarized in Fig. 2. The main feature
of these series of values is their linear (HS) or staircase (SW with *=2, 3�2
and 4�3) behaviour beyond a given distance which depends upon the well
width. This is a simple mathematical consequence of the explicit convolu-
tion nature of the PY equation. It can be shown that a solution of this kind
of equations with order of continuity p at r=a and p$ at r=b is necessarily
a function with order of continuity p+ p$+3 at r=a+b. This rule is suf-
ficient to explain the trend for r�3_ on every case plotted in Fig. 2.
Discontinuities of the structure functions derivatives appear at r=_ and
r=*_ as a consequence of the singularities of the interaction potential, ,(r),
and are then propagated in a way we are not familiar with in the domain
of linear physics. The cases analyzed in detail in this paper give us also
some insight on the interplay of the relative positions of the discontinuites
of the potential and we could suggest an explanation for the qualitatively
different behaviours of the cases 1<*<2 and *=2 showed in Fig. 2. The
order of continuity appears to be generally lower in the latter case and we
can attribute that to an interference of the singularities of the Mayer func-
tion because for *=2 the square-well border is placed precisely on a point
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Fig. 2. Order of continuity of y(r) versus r�_ for the SW fluid with *=2 (squares), *=3�2
(triangles), and *=4�3 (dots), and the HS fluid (circles). The order of continuity is assumed
to be infinity if not plotted.

where the singularities induced by the hard core are propagated to. Conjec-
tures about what will occur with arbitrary values of * are discussed in the
next section.

V. CONCLUDING REMARKS

In this paper the analytic properties of the structure function of
square-well (SW) fluids have been studied. The SW potential is a simple
but useful model of more realistic interactions as it includes not only the
volume exclusion effect of the hard core but also a finite range attractive
part. It has been used as a model for fluids, systems of colloidal particles,
microemulsions and micelles.(11�15) Throughout this paper, it has been
assumed that the structure function �(r)=ry(r) satisfies the well known
nonlinear Percus�Yevick (PY) integral equation. Despite the apparent sim-
plicity of the SW potential, no exact solution of this equation has ever been
found. The reduction of the PY equation to a system of nonlinear integral
equations unveils the degree of difficulty of the problem. The structure
function, �(r), must be defined by analytical pieces and this is unsuitable
for a purely local treatment, except in the hard-sphere(3) and sticky-hard-
sphere(6) models, where an expression for the Laplace transform of rg(r)
was found.

Although we have restricted ourselves to the cases *=2, *=3�2 and
*=4�3, the general pattern for any value * seems clear. If * is an integer
we have discontinuities only at r�_=1, 2,..., the ``resonance'' condition is
fulfilled and the order of continuity grows as r for large r. If * is not an
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integer we must expect the appearance of discontinuities at those points
which can be expressed as a linear combination of the fundamental scale
lengths _ (the hard core diameter) and (*&1) _ (the SW width),
n_+m(*&1) _, where n and m are integers. If * is a rational number there
is some point that can be obtained by using two different pairs of integers
(n, m) and the location of the discontinuity points repeats periodically after
that. That is not the case for irrational values of *. A direct consequence
of the choice of a width well (*&1) _ incommensurate with the hard core
diameter _ is that the order of continuity at r�_=1, 2,... will possibly coin-
cide with the corresponding to the HS fluid because the two discontinuities
of the interaction potential do not interfere in this case. In the cases we
have discussed (*=3�2 and *=4�3) there is still some kind of ``resonance''
and this gives rise to an order of continuity lower in two units to that of
the HS fluid at r�_=4, 5,... (See Fig. 2). However, the conjecture expressed
in Eqs. (48)�(52) for 1<*<2 is sufficient for the purpose of the search of
approximate structure functions as only this interval is considered physi-
cally meaningful in the applications of the model to simple fluids or
colloids. We must also emphasize that these results have been derived in
the context of the PY equation but, referring only to the key features of the
structure functions, it is possible that they are more general. An analysis of
other integral equations for fluids and the Mayer diagrams not taking into
account by them would be necessary in order to clarify this point.

This work was already started in the early days of the theory of liq-
uids. Percus showed, (4) in the context of the PY equation for hard spheres,
that analytic breakings on the structure functions should appear whenever
distances between particle centers along a chain are modified so to accom-
modate a new particle. This result explains the discontinuites on the cavity
function derivatives at r=_, 2_, 3_,... that are listed in the Eqs. (A4)�(A5).
A combination of formal and heuristic geometric arguments were used later
by Stillinger(16) in order to identify the diagrams which cause discon-
tinuities in the derivatives of g(r) for hard spheres up to fourth order in the
density. The most simple diagrams are the chains but we have also double
chains and triply-connected diagrams that are not included in the PY
approximation. The topological change associated with the separation or
the approaching of a given pair of spheres in the cluster corresponding to
the diagram within a distance which avoids the contact of all the particles
was found to be the origin of a singularity of the structure function. In that
way, the lowest-order double chain gives rise to a singularity at r=- 3_
and the lowest-order triply-connected cluster is responsible for a discon-
tinuity at r=- 8�3_.(17) Careful Monte Carlo simulations carried out by
Seaton and Glandt(18) for the fluid of adhesive spheres have confirmed the
existence of discontinuities of the radial distribution function at r=- 8�3_,
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- 3_ and 2_. The latter is the most striking one and this is taking into
account by the PY solution because it is originated by the chain diagram
with two bonds. The more complex spatial diagrams are responsible for the
discontinuities at r=- 8�3_ and - 3_ which are not included in the PY
solution for the sticky hard sphere potential.(6) Nevertheless, these two are
less prominent features of g(r) than the discontinuity at r=2_ and the PY
solution gives a good overall agreement with Monte Carlo simulation
results.(18) Stillinger(16) has even suggested that the full set of singularities
of g(r) for the hard sphere or hard disk case is dense throughout the entire
range 0�r<� as a consequence of the formation or breaking of bonds on
random packings when r (the distance between two given particles in the
cluster) is slightly varied.

Analytical approximations proposed by different routes are equally
interesting alternatives to the solution of the integral equations. These
approximations are usually based on the imposition of continuity condi-
tions at the hard core and the SW border. For example, the approximation
of Nezbeda(8) for a very thin SW interaction is based upon the continuity
of the first and the second derivatives of y(r) at r=_. On the other hand,
Yuste and Santos(9) proposed an approximation on the basis of some
physical conditions, among which the continuity of y(r) at r=*_. The
latter authors are forced to fix one of the parameters of their model at its
low density value in order to close the system of nonlinear equations that
those parameters satisfy. The results derived in Sections III and IV allow
the imposition of continuity conditions on the first derivative of y(r) at
r=* and this would close the system of equations of Yuste and Santos's
model in a more convincing way. Similarly, Nezbeda approximation could
possibly be improved by imposing the continuity of the third derivative at
r=_. Work along this line is currently in progress and will be published
elsewhere.

APPENDIX. THE HARD-SPHERE FLUID

In this case the structure function �(t) is defined in the piecewise form
given in (10) and the set of equations satisfied by the analytic functions
�n(t), n=0, 1,... is obtained from (12)�(15) if the limit : � 0 is taken
(which is equivalent to take = � 0 or T � �). The derivatives of order k,
k�2 has already been given in Eqs. (16)�(19). By setting :=0 in these
equations we get

� (k)
0 (t)=&12' :

k&2

j=0

(&1) j � ( j )
0 (1&t) � (k&2& j )

1 (1)+[Int] (A1)
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� (k)
1 (t)=12' :

k&2

j=0

[(&1) j � ( j )
0 (2&t) 2 (k&2& j )

1

+� ( j )
0 (t&1) �(k&2& j )

1 (1)]+[Int] (A2)

� (k)
n (t)=12' :

k&2

j=0

[(&1) j � ( j )
0 (n+1&t) 2(k&2& j )

n

&� ( j )
0 (t&n) 2(k&2& j )

n&1 ]+[Int], n�2 (A3)

where the terms [Int] again denote the sum of several integrals over the
functions �0(t), �1(t),..., whose explicit expressions are not required as
these terms are always continuous at the points of interest t=1, 2,... . The
derivative jumps 2 (k)

n , n=0, 1,..., k=0, 1,... have been already defined in
(11) and the nonzero symbols 2 (k)

n corresponding to the lowest value of k
for every n can be derived from (A1)�(A3). The results are

2(4)
0 =&12'�1(1) 2 (2)

1 &24'�1(1) � (2)
0 (0)=(12')2 [�(1)]3 (A4)

2 (2n)
n =(12')n [&�(1)]n+1, n�1 (A5)

where �(1)=(1+'�2)�(1&')2 is the PY exact result(3) for the structure
function at the hard core contact point. Note that the HS fluid can also be
seen as a SW fluid in the limit * � 1.
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